Numerical semigroups from combinatorial configurations

Klara Stokes

Universitat Rovira i Virgili and Universitat Oberta de Catalunya

This is joint work with Maria Bras-Amorós Ralf Fröberg Christian Gottlieb

Iberian meeting on numerical semigroups - Vila Real 2012

Table of Contents

2 Examples for special parameters

3 Linear non-homogeneous patterns

Table of Contents

1 Introduction

2 Examples for special parameters

- 3 Linear non-homogeneous patterns
- 4 Admissible numerical semigroups for a fixed integer

Combinatorial configurations

A (combinatorial) (v, b, r, k)-configuration has

- v points,
- b lines,
- r lines through every point and
- k points on every line.

When v and b is not known or important we use the notation (r, k)-configuration.

We say that a configuration is **balanced** if r = k. This implies v = b.

The combinatorial configurations are also

- regular and uniform partial linear spaces,
- a subfamily of the regular and uniform hypergraphs.

Examples of combinatorial configurations

Examples of combinatorial configurations

Parameter sets of combinatorial configurations

For which parameter sets do combinatorial (v, b, r, k)-configurations exist?

Four parameters are redundant - we only need three:

(d, r, k)

with

$$v = \frac{dk}{\gcd(r,k)}$$
 and $b = \frac{dr}{\gcd(r,k)}$.

The set of (r, k)-configurable tuples

Define $S_{(r,k)} = \left\{ d \in \mathbb{N} \cup \{0\} : \left(\frac{dk}{\gcd(r,k)}, \frac{dr}{\gcd(r,k)}, r, k\right) \text{ is configurable} \right\}.$

Theorem (Bras-Amorós and Stokes)

For every pair of integers $r, k \ge 2$, $S_{(r,k)}$ is a numerical semigroup.

Lemma

A set of positive integers generate a numerical semigroup if and only if they are coprime.

It is therefore enough to prove:

- $0 \in S_{(r,k)}$,
- $S_{(r,k)}$ is closed under addition,
- at least two elements of $S_{(r,k)}$ are coprime.

For the first fact, consider the empty configuration.

The two latter facts are proved by combining several configurations into larger configurations.

• Two (r, k)-configurations can be combined so that $(\mathcal{P}_1, \mathcal{L}_1, \mathcal{I}_1) \oplus (\mathcal{P}_2, \mathcal{L}_2, \mathcal{I}_2) = (\mathcal{P}_1 \cup \mathcal{P}_2, \mathcal{L}_1 \cup \mathcal{L}_2, \mathcal{I}).$ Using the definition of the elements in $S_{(r,k)}$ we get that

.

$$d, d' \in S_{(r,k)} \Rightarrow d + d' \in S_{(r,k)}$$

- We want to construct two coprime elements in $S_{(r,k)}$.
- We get one element in $S_{(r,k)}$ (say d) associated to the combinatorial configuration obtained by taking parallel classes of a finite affine plane.
- We construct a second combinatorial configuration with an associate integer that is coprime with d.
 Previous work: md + 1, with m = rk/gcd(r, k).
 In this talk we prove 2d 1.

Table of Contents

Introduction

2 Examples for special parameters

3 Linear non-homogeneous patterns

4 Admissible numerical semigroups for a fixed integer

When r = k, then there are two constructions (see [Grünbaum]) implying

$$d_1, d_2 \in S_{(r,r)} \Rightarrow d_1 + d_2 - 1$$

and

$$d_1, d_2 \in S_{(r,r)} \Rightarrow d_1 + d_2 + 1.$$

Given an element $d \in S_{(r,r)}$ we get $2d - 1, 2d, 2d + 1 \in S_{(r,r)}$. In particular this is enough for proving finite complement.

Balanced configurations

Computer search is very hard. Using cyclic configurations, difference sets, Golomb rulers, Thm Bose and Connor we know:

Examples

r = k	π	$S_{(r,k)}$	$\setminus \{0\}$							
3	7	7	\rightarrow							
4	13	13	\rightarrow							
5	21	21	22	23	\rightarrow					
6	31	31	,32	33	34	\rightarrow				
7	43	4 3	<i>4</i> 4	45	46	47	48	\rightarrow		
8	57	57	58	59	60	61	62	63	\rightarrow	
9	73	73	74	75	76	77	78	79	$80 \rightarrow$	

For $r = k \in [10, ..., 37]$ we know between 35% (for r = k = 10) and 89% (for r = k = 16) of the small elements of the numerical semigroups $S_{(r,k)}$ [Davydov,Faina,Guilietti,Marcugini,Pambianco]. Let AG(2, q) be a finite affine plane over a finite field with q elements. If $q \ge \max(r, k)$ then a choice of parallel classes of lines in AG(2, q) gives a combinatorial configuration with associated integer $q \operatorname{gcd}(r, k)$.

Theorem

If gcd(r,k) = 1, then any prime power $q \ge max(r,k)$ belongs to $S_{(r,k)}$.

Theorem (Bras-Amorós)

Let c be the conductor of a numerical semigroup that contains all prime powers larger than or equal to a given integer n. Then this conductor satisfies

$$c \leqslant 2 \prod_{p \text{ prime, } p < n} (\lfloor \log_p(n-1) \rfloor + 1),$$

and also

$$c \leqslant \prod_{p \text{ prime, } p < n} p^{(\lfloor \log_p(n-1) \rfloor)} + 1.$$

Open question: What is the conductor of the numerical semigroup generated by all prime powers larger than *n*?

Table of Contents

Introduction

2 Examples for special parameters

- 3 Linear non-homogeneous patterns
- 4 Admissible numerical semigroups for a fixed integer

A pattern of length *n* admitted by a numerical semigroup *S* is a polynomial $p(X_1, \ldots, X_n)$ with non-zero integer coefficients, such that, for every ordered sequence of *n* elements $s_1 \ge \ldots \ge s_n$ from *S*, we have $p(s_1, s_2, \ldots, s_n) \in S$.

Example

Let S be a numerical semigroup such that for every triple $s_1 \ge s_2 \ge s_3$ in S we have $s_1 + s_2 - s_3 \in S$. Then the polynomial $X_1 + X_2 - X_3$ is a pattern for S.

A pattern is called linear and homogenous if the pattern polynomial is linear and homogenous.

Theorem

Let $S_{(r,k)}$ be a numerical semigroup associated to the (r, k)-configurations. Then $S_{(r,k)}$ admits the pattern

$$X_1 + X_2 - n$$

for all $n \in [1, ..., gcd(r, k)]$.

Proof.

2

3

Take two (r, k)-configurations A and B with associated integers d_A and d_B .

- Remove $a := nk/\gcd(r,k)$ points p_1, \ldots, p_a on a line L in A.
 - Also remove b := nr/gcd(r, k) lines l₁,..., l_b through a point p in B.
- The line L is now missing nk/gcd(r,k) points.
 - The rest of the (nk/gcd(r, k)) (r − 1) lines through the removed points are missing one point each.
 - Fill up the missing points on *L* with *p* and enough points from l_1 .
 - Fill up missing lines through p with enough lines from p.
 - Fill up rest of missing points on lines with points from l_1, \ldots, l_b until through all these points pass r lines.

The result is an (r, k)-configuration with associated integer $d_1 + d_2 - n$.

Theorem

The conductor c of a numerical semigroup $S_{(r,k)}$ associated to the (r, k)-configurations is bounded by

$$c \leq (x+1)m - x \operatorname{gcd}(r,k)$$

where *m* is the multiplicity of $S_{(r,k)}$ and $x = \left\lfloor \frac{m-2}{\gcd(r,k)} \right\rfloor$.

Proof.

If $d \in S_{(r,k)}$ then $2d - n \in S_{(r,k)}$ for $n \in [1, \operatorname{gcd}(r, k)]$. Therefore the intervals $I_x = [(x + 1)d - x \operatorname{gcd}(r, k)), (x + 1)d]$ belongs to $S_{(r,k)}$ for $d \in S_{(r,k)}$. If there is a gap between I_x and I_{x-1} , then $(x + 1)d - x \operatorname{gcd}(r, k) > xd + 1$, so that $x < \frac{d-1}{\operatorname{gcd}(r,k)}$. Hence, for $x \ge \left\lfloor \frac{d-2}{\operatorname{gcd}(r,k)} \right\rfloor$ there are no gaps between the intervals I_x .

Table of Contents

Introduction

2 Examples for special parameters

3 Linear non-homogeneous patterns

Admissible numerical semigroups $S_{(r,k)}$ for a fixed integer d

Lemma

Suppose that there exists a configuration with parameters (v, b, r, k). Then we have

$$v \ge r(k-1)+1$$

and also

$$b \geqslant k(r-1)+1.$$

In the following, remember that $v = \frac{dk}{\gcd(r,k)}$ and $b = \frac{dr}{\gcd(r,k)}$.

Definition

For
$$d \in \mathbb{N}$$
 we denote
 $R_d = \{(r,k) \in \mathbb{N}^2_{\geqslant 2} : r(k-1) + 1 \leqslant \frac{dk}{\gcd(r,k)} \text{ and}$
 $k(r-1) + 1 \leqslant \frac{dr}{\gcd(r,k)} \}.$

Examples

Proposition

The set R_d is finite.

- **2** The set R_d is symmetric, in the sense that if $(r, k) \in R_d$ then $(k, r) \in R_d$.
- 3 If d < d' then $R_d \subseteq R_{d'}$.
- **3** The l_1 norm of a point $P = (r, k) \in R_d$ satisfies $l_1(P) = |r| + |k| = r + k \leq 2d + 2$ and when $r \neq k$ we have $l_1(P) = |r| + |k| = r + k \leq 2d + 1$.

Corollary

The parameters r and k of a combinatorial (r, k)-configuration with associated integer d satisfy

$$r+k\leqslant 2d+1.$$

Observe that the fact that $(r, k) \in R_d$ does not imply that $S_{(r,k)}$ actually contains d. For example

$$\begin{aligned} R_{43} &= \{(r,k) \in \mathbb{N}^2: \quad r(k-1)+1 \geqslant \frac{43k}{\gcd(r,k)}, \\ &\quad k(r-1)+1 \geqslant \frac{43r}{\gcd(r,k)} \text{ and } r,k \geqslant 2\}, \end{aligned}$$

which means that $(7,7) \in R_{43}$, but if 43 was in $S_{(7,7)}$, then there would be a (43, 43, 7, 7)-configuration and this configuration would be a finite projective plane of order 6. But there is no finite projective plane of order 6, so 43 can not be in $S_{(7,7)}$.

Numerical semigroups $S_{(r,k)}$ containing an certain integer

Difference of regions R_d of parameters (r, k) admitting d	Numerical semigroups $S_{(r,k)}$				
$R_2 = \{(2,3), (3,2)\}$	$S_{(r,k)} = \{0, 2 \rightarrow\}$				
$R_3 \setminus R_2 = \{(2,2), (2,5), \\ (5,2), (3,4), (4,3)\}$	$S_{(r,k)} = \{0, 3 \rightarrow\}$				
$R_4 \setminus R_3 = \{(2,7), (7,2), (3,5), (5,3), (4,5), (5,4)\}$	$S_{(r,k)} = \{0, 4 \rightarrow\}$				
$R_5 \setminus R_4 = \{(2,4), (4,2), (2,9), \\ (9,2), (3,7), (7,3), (5,6)(6,5)\}$	$S_{(r,k)} = \{0, 5 \rightarrow\}$ except possibly $S_{(5,6)} = S_{(6,5)} = \{0, 5, 6, 7 \rightarrow\}$				

• Does all numerical semigroups appear as the numerical semigroup of a the (r, k)-configurations for some parameter set (r, k)?

No! For example, a non-ordinary numerical semigroup with multiplicity 2 is NOT a numerical semigroup of the (r, k)-configurations for any (r, k).

• Can the same numerical semigroup appear as attached to the (r, k)-configurations several parameters (r, k)?

Yes! For example, the numerical semigroups $S_{(5,2)} = S_{(2,5)} = S_{(2,2)} = \{0, 3 \rightarrow\}.$

- M. Bras-Amorós and K. Stokes (2012) The semigroup of combinatorial configurations, Semigroup Forum, 84:1, pp. 91-96.
- A.A. Davydov, G. Faina, M. Giulietti, S. Marcugini, F. Pambianco On constructions and parameters of symmetric configurations v_k, Arxiv:1203.0709v1.
- B. Grünbaum, "Configurations of Points and Lines." American Mathematical Society, Providence, RI, 2009.
- K. Stokes and M. Bras-Amorós (2011) Associating a numerical semigroup to the triangle-free configurations, Advances in Mathematics of Communications, 5:2, pp. 351-371.

Thank you very much!