On differential operators of numerical semigroup rings

Valentina Barucci

Department of Mathematics Sapienza Università di Roma 1

Iberian meeting on numerical semigroups Vila Real July 18 - 20 2012

Valentina Barucci On differential operators of numerical semigroup rings

< /₽ > < ∃ > <

Let *R* be a commutative *k*-algebra. The ring of differential operators D(R) of *R* is inductively defined as

 $D^0(R) = \{\Theta_a; a \in R\}$

where $\Theta_a : R \to R$ is the multiplication map $r \mapsto ar$

 $D^n(R) = \{\Theta \in \operatorname{Hom}_k(R, R); [\Theta, D^0(R)] \subseteq D^{n-1}(R)\}$ where $[\Theta, \Phi] = \Theta \Phi - \Phi \Theta$ is the commutator.

 $D(R) = \cup_{n \ge 0} D^n(R)$

Valentina Barucci On differential operators of numerical semigroup rings

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Let *R* be a commutative *k*-algebra. The ring of differential operators D(R) of *R* is inductively defined as

 $D^0(R) = \{\Theta_a; a \in R\}$

where $\Theta_a : R \to R$ is the multiplication map $r \mapsto ar$

 $D^n(R) = \{\Theta \in \operatorname{Hom}_k(R, R); [\Theta, D^0(R)] \subseteq D^{n-1}(R)\}$

where $[\Theta, \Phi] = \Theta \Phi - \Phi \Theta$ is the commutator.

 $D(R) = \cup_{n \ge 0} D^n(R)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The rings of differential operators of such semigroup \mathbb{C} -algebras $\mathbb{C}[[S]]$ (or $\mathbb{C}[S]$) have been studied by Perkins, Eriksen, Eriksson. They showed that

- $D(\mathbb{C}[S]) \subseteq D(\mathbb{C}[t, t^{-1}]) = \{f_n \partial^n + \dots + f_1 \partial + f_0; f_i \in \mathbb{C}[t, t^{-1}]\}$
- If $f_n \neq 0$, $f_n \partial^n + \cdots + f_1 \partial + f_0 \in D^n(\mathbb{C}[t, t^{-1}])$
- D(ℂ[S]) is a non commutative ring generated as ℂ-algebra by a finite number of differential operators with leading term f_n∂ⁿ, with f_n ∈ ℂ[t, t⁻¹].

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The rings of differential operators of such semigroup \mathbb{C} -algebras $\mathbb{C}[[S]]$ (or $\mathbb{C}[S]$) have been studied by Perkins, Eriksen, Eriksson. They showed that

• $D(\mathbb{C}[S]) \subseteq D(\mathbb{C}[t, t^{-1}]) = \{f_n \partial^n + \dots + f_1 \partial + f_0; f_i \in \mathbb{C}[t, t^{-1}]\}$

• If $f_n \neq 0$, $f_n \partial^n + \cdots + f_1 \partial + f_0 \in D^n(\mathbb{C}[t, t^{-1}])$

 D(ℂ[S]) is a non commutative ring generated as ℂ-algebra by a finite number of differential operators with leading term f_n∂ⁿ, with f_n ∈ ℂ[t, t⁻¹].

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The rings of differential operators of such semigroup \mathbb{C} -algebras $\mathbb{C}[[S]]$ (or $\mathbb{C}[S]$) have been studied by Perkins, Eriksen, Eriksson. They showed that

- $D(\mathbb{C}[S]) \subseteq D(\mathbb{C}[t, t^{-1}]) = \{f_n \partial^n + \dots + f_1 \partial + f_0; f_i \in \mathbb{C}[t, t^{-1}]\}$
- If $f_n \neq 0$, $f_n \partial^n + \cdots + f_1 \partial + f_0 \in D^n(\mathbb{C}[t, t^{-1}])$
- D(ℂ[S]) is a non commutative ring generated as ℂ-algebra by a finite number of differential operators with leading term f_n∂ⁿ, with f_n ∈ ℂ[t, t⁻¹].

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The rings of differential operators of such semigroup \mathbb{C} -algebras $\mathbb{C}[[S]]$ (or $\mathbb{C}[S]$) have been studied by Perkins, Eriksen, Eriksson. They showed that

•
$$D(\mathbb{C}[S]) \subseteq D(\mathbb{C}[t, t^{-1}]) = \{f_n \partial^n + \dots + f_1 \partial + f_0; f_i \in \mathbb{C}[t, t^{-1}]\}$$

• If
$$f_n \neq 0$$
, $f_n \partial^n + \cdots + f_1 \partial + f_0 \in D^n(\mathbb{C}[t, t^{-1}])$

 D(ℂ[S]) is a non commutative ring generated as ℂ-algebra by a finite number of differential operators with leading term f_n∂ⁿ, with f_n ∈ ℂ[t, t⁻¹].

・ 同 ト ・ ヨ ト ・ ヨ ト

Example. $D(\mathbb{C}[t^2, t^3])$ is a \mathbb{C} -algebra generated by $t^2, t^3, t\partial, t^2\partial, \partial^2 - 2t^{-1}\partial, t\partial^2 - \partial, \partial^3 - 3t^{-1}\partial^2 + 3t^{-2}\partial$

here for example $\partial t \neq t\partial$. Indeed, if $f \in \mathbb{C}[t^2, t^3]$,

 $\partial t(f) = \partial(tf) = f + tf'$ $t\partial(f) = tf'$ $\partial t - t\partial = 1 \Rightarrow \partial t = t\partial + 1$

Example. $D(\mathbb{C}[t^2, t^3])$ is a \mathbb{C} -algebra generated by $t^2, t^3, t\partial, t^2\partial, \partial^2 - 2t^{-1}\partial, t\partial^2 - \partial, \partial^3 - 3t^{-1}\partial^2 + 3t^{-2}\partial$ here for example $\partial t \neq t\partial$. Indeed, if $f \in \mathbb{C}[t^2, t^3]$, $\partial t(f) = \partial(tf) = f + tf'$ $t\partial(f) = tf'$

$$\partial t - t\partial = 1 \Rightarrow \partial t = t\partial + 1$$

- gr(D(ℂ[S])) is commutative In the example t∂ and ∂t = t∂ + 1 give the same element of D¹/D⁰, so they coincide in gr(D(ℂ[S]))
- $\operatorname{gr}(D(\mathbb{C}[S])) \subseteq \mathbb{C}[x, y]$. In the example from

 $t^2, t^3, t\partial, t^2\partial, \partial^2 - 2t^{-1}\partial, t\partial^2 - \partial, \partial^3 - 3t^{-1}\partial^2 + 3t^{-2}\partial$

we get

$$gr(D(\mathbb{C}[t^2, t^3])) = \mathbb{C}[x^2, x^3, xy, x^2y, y^2, xy^2, y^3]$$

▲□▶▲帰▶▲≡▶▲≡▶ = のQ()

- gr(D(ℂ[S])) is commutative In the example t∂ and ∂t = t∂ + 1 give the same element of D¹/D⁰, so they coincide in gr(D(ℂ[S]))
- $\operatorname{gr}(D(\mathbb{C}[S])) \subseteq \mathbb{C}[x, y]$. In the example from

 $t^2, t^3, t\partial, t^2\partial, \partial^2 - 2t^{-1}\partial, t\partial^2 - \partial, \partial^3 - 3t^{-1}\partial^2 + 3t^{-2}\partial$

we get

$$gr(D(\mathbb{C}[t^2, t^3])) = \mathbb{C}[x^2, x^3, xy, x^2y, y^2, xy^2, y^3]$$

▲□▶▲帰▶▲≡▶▲≡▶ = のQ()

- gr(D(ℂ[S])) is commutative In the example t∂ and ∂t = t∂ + 1 give the same element of D¹/D⁰, so they coincide in gr(D(ℂ[S]))
- $\operatorname{gr}(D(\mathbb{C}[S])) \subseteq \mathbb{C}[x, y]$. In the example from

 $t^2, t^3, t\partial, t^2\partial, \partial^2 - 2t^{-1}\partial, t\partial^2 - \partial, \partial^3 - 3t^{-1}\partial^2 + 3t^{-2}\partial$

we get

$$gr(D(\mathbb{C}[t^2, t^3])) = \mathbb{C}[x^2, x^3, xy, x^2y, y^2, xy^2, y^3]$$

◆ロ ▶ ◆帰 ▶ ◆ ヨ ▶ ◆ ヨ ◆ 今 Q (>

- gr(D(ℂ[S])) is commutative In the example t∂ and ∂t = t∂ + 1 give the same element of D¹/D⁰, so they coincide in gr(D(ℂ[S]))
- $\operatorname{gr}(D(\mathbb{C}[S])) \subseteq \mathbb{C}[x, y]$. In the example from

$$t^2, t^3, t\partial, t^2\partial, \partial^2 - 2t^{-1}\partial, t\partial^2 - \partial, \partial^3 - 3t^{-1}\partial^2 + 3t^{-2}\partial$$

we get

$$\operatorname{gr}(D(\mathbb{C}[t^2,t^3])) = \mathbb{C}[x^2,x^3,xy,x^2y,y^2,xy^2,y^3]$$

伺 と く ヨ と く ヨ と …

For each $z \in \mathbb{Z}$, define the *valency* of *z* with respect to a numerical semigroup *S* as val(*z*) = #{s $\in S$; *z* + s $\notin S$ }. Example

$$S = \langle 5, 7, 11, 13 \rangle$$

Valentina Barucci On differential operators of numerical semigroup rings

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

For each $z \in \mathbb{Z}$, define the *valency* of *z* with respect to a numerical semigroup *S* as val(*z*) = #{s \in S; *z* + s \notin *S*}. Example

$$S = \langle 5, 7, 11, 13 \rangle$$

→ ∃ → < ∃</p>

э

For each $z \in \mathbb{Z}$, define the *valency* of *z* with respect to a numerical semigroup *S* as val(*z*) = #{*s* ∈ *S*; *z* + *s* ∉ *S*}. So val(*z*) ≥ 0, for each *z* ∈ \mathbb{Z} . Example

$$S = \langle 5, 7, 11, 13 \rangle$$

$$val(3) = 2$$
 because $3 + 0 \notin S$ and $3 + 5 \notin S$
 $val(-3) = 5$, because $-3 + 0 \notin S$, $-3 + 5 \notin S$, $-3 + 7 \notin S$,
 $-3 + 11 \notin S$, $-3 + 12 \notin S$.
 $val(-3) = val(3) + 3 = 2 + 3 = 5$

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma (P.T. Perkins)

For each $z \in \mathbb{Z}$,

$$val(-z) = val(z) + z$$

Theorem (E. Eriksen, A. Eriksson, independently)

Let $S = \langle d_1, \dots, d_{\nu} \rangle$ be a numerical semigroup, let $\pm H(S) = \{\pm h; h \in \mathbb{N} \setminus S\}$ and let $A = \operatorname{gr}(D(\mathbb{C}[S]))$ then A is minimally generated by

$$\{x^{d_1}, \dots, x^{d_{\nu}}, y^{d_1}, \dots, y^{d_{\nu}}\} \cup \{xy\} \cup \{x^{val(-h)}y^{val(h)}\}_{h \in \pm H(S)}$$

Thus $A = \mathbb{C}[\Sigma]$, where

 $\Sigma = \langle (d_1, 0), \dots, (d_{\nu}, 0), (1, 1), (0, d_1), \dots, (0, d_{\nu}), \{ (val(-h), val(h)) \} \rangle$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Lemma (P.T. Perkins)

For each $z \in \mathbb{Z}$,

$$val(-z) = val(z) + z$$

Theorem (E. Eriksen, A. Eriksson, independently)

Let $S = \langle d_1, \dots, d_{\nu} \rangle$ be a numerical semigroup, let $\pm H(S) = \{\pm h; h \in \mathbb{N} \setminus S\}$ and let $A = \operatorname{gr}(D(\mathbb{C}[S]))$ then A is minimally generated by

$$\{\mathbf{x}^{d_1},\ldots,\mathbf{x}^{d_{\nu}},\mathbf{y}^{d_1},\ldots,\mathbf{y}^{d_{\nu}}\}\cup\{\mathbf{x}\mathbf{y}\}\cup\{\mathbf{x}^{val(-h)}\mathbf{y}^{val(h)}\}_{h\in\pm H(S)}\}$$

Thus $A = \mathbb{C}[\Sigma]$, where

 $\Sigma = \langle (d_1, 0), \dots, (d_{\nu}, 0), (1, 1), (0, d_1), \dots, (0, d_{\nu}), \{ (val(-h), val(h)) \} \rangle$

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶ 三厘。

Lemma (P.T. Perkins)

For each $z \in \mathbb{Z}$,

$$val(-z) = val(z) + z$$

Theorem (E. Eriksen, A. Eriksson, independently)

Let $S = \langle d_1, \dots, d_{\nu} \rangle$ be a numerical semigroup, let $\pm H(S) = \{\pm h; h \in \mathbb{N} \setminus S\}$ and let $A = \operatorname{gr}(D(\mathbb{C}[S]))$ then A is minimally generated by

$$\{x^{d_1}, \dots, x^{d_{\nu}}, y^{d_1}, \dots, y^{d_{\nu}}\} \cup \{xy\} \cup \{x^{val(-h)}y^{val(h)}\}_{h \in \pm H(S)}$$

Thus $A = \mathbb{C}[\Sigma]$, where

 $\Sigma = \langle (d_1, 0), \dots, (d_{\nu}, 0), (1, 1), (0, d_1), \dots, (0, d_{\nu}), \{ (\mathsf{val}(-h), \mathsf{val}(h)) \} \rangle$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ●

Example If $S = \langle 3, 5 \rangle$, then $H(S) = \{7, 4, 2, 1\}$ and

val(7) = 1, val(4) = 2, val(2) = 2, val(1) = 3.

Thus, if $gr(D(\mathbb{C}[S])) = \mathbb{C}[\Sigma]$, then Σ is minimally generated by (3,0), (5,0), (1,1), (0,3), (0,5), and....

$$(val(-7), val(7)) = (8, 1)$$
, in fact $((val(-h) = val(h) + h))$
 $(val(-4), val(4)) = (6, 2)$
 $(val(-2), val(2)) = (4, 2)$
 $(val(-1), val(1)) = (4, 3)$
 $(val(7), val(-7)) = (1, 8)$
 $(2, 6), (2, 4), (3, 4).$

Example If $S = \langle 3, 5 \rangle$, then $H(S) = \{7, 4, 2, 1\}$ and

$$val(7) = 1, val(4) = 2, val(2) = 2, val(1) = 3.$$

Thus, if $gr(D(\mathbb{C}[S])) = \mathbb{C}[\Sigma]$, then Σ is minimally generated by (3,0), (5,0), (1,1), (0,3), (0,5), and....

$$(val(-7), val(7)) = (8, 1)$$
, in fact $((val(-h) = val(h) + h))$
 $(val(-4), val(4)) = (6, 2)$
 $(val(-2), val(2)) = (4, 2)$
 $(val(-1), val(1)) = (4, 3)$
 $(val(7), val(-7)) = (1, 8)$
 $(2, 6), (2, 4), (3, 4).$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example If $S = \langle 3, 5 \rangle$, then $H(S) = \{7, 4, 2, 1\}$ and

$$val(7) = 1, val(4) = 2, val(2) = 2, val(1) = 3.$$

Thus, if $gr(D(\mathbb{C}[S])) = \mathbb{C}[\Sigma]$, then Σ is minimally generated by (3,0), (5,0), (1,1), (0,3), (0,5), and....

$$(val(-7), val(7)) = (8, 1)$$
, in fact $((val(-h) = val(h) + h))$
 $(val(-4), val(4)) = (6, 2)$
 $(val(-2), val(2)) = (4, 2)$
 $(val(-1), val(1)) = (4, 3)$
 $(val(7), val(-7)) = (1, 8)$
 $(2, 6), (2, 4), (3, 4).$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\Delta_z = \{(a,b) \in \mathbb{N}^2; a-b=z\}$$

If $s \in \pm S$, since $(1, 1) \in \Sigma$, then $\Delta_s \subset \Sigma$. For (a, b) in such diagonal Δ_s ,

 $\operatorname{val}(a - b) = \operatorname{val}(s) = 0 \text{ or } s$

In both cases $\operatorname{val}(a - b) \leq b$. If $h \in \pm H(S)$ and $(a, b) \in \Delta_h$, then $(a, b) \in \Sigma \Leftrightarrow \operatorname{val}(a - b) \leq b$

Thus

Proposition (B. - Fröberg)

Let $(a, b) \in \mathbb{N}^2$. Then

 $(a,b) \in \Sigma \Leftrightarrow \operatorname{val}(a-b) \leq b \Leftrightarrow a-b \in V_b$

where $V_b = \{n \in \mathbb{N}; \operatorname{val}(n) \leq b\}$

$$\Delta_{z} = \{(a,b) \in \mathbb{N}^{2}; a-b=z\}$$

If $s \in \pm S$, since $(1, 1) \in \Sigma$, then $\Delta_s \subset \Sigma$. For (a, b) in such diagonal Δ_s ,

$$\operatorname{val}(a - b) = \operatorname{val}(s) = 0 \text{ or } s$$

In both cases val $(a - b) \le b$. If $h \in \pm H(S)$ and $(a, b) \in \Delta_h$, then $(a, b) \in \Sigma \Leftrightarrow val(a - b) \le b$

Thus

Proposition (B. - Fröberg)

Let $(a, b) \in \mathbb{N}^2$. Then

 $(a,b) \in \Sigma \Leftrightarrow \operatorname{val}(a-b) \leq b \Leftrightarrow a-b \in V_b$

where $V_b = \{n \in \mathbb{N}; \operatorname{val}(n) \leq b\}$

$$\Delta_z = \{(a,b) \in \mathbb{N}^2; a-b=z\}$$

If $s \in \pm S$, since $(1, 1) \in \Sigma$, then $\Delta_s \subset \Sigma$. For (a, b) in such diagonal Δ_s ,

$$\operatorname{val}(a - b) = \operatorname{val}(s) = 0 \text{ or } s$$

In both cases $\operatorname{val}(a - b) \leq b$. If $h \in \pm H(S)$ and $(a, b) \in \Delta_h$, then $(a, b) \in \Sigma \Leftrightarrow \operatorname{val}(a - b) \leq b$

Thus

Proposition (B. - Fröberg)

Let $(a, b) \in \mathbb{N}^2$. Then

```
(a,b) \in \Sigma \Leftrightarrow \operatorname{val}(a-b) \leq b \Leftrightarrow a-b \in V_b
```

where $V_b = \{n \in \mathbb{N}; \operatorname{val}(n) \leq b\}$

$$\Delta_{{\it Z}}=\{({\it a},{\it b})\in \mathbb{N}^2; {\it a}-{\it b}={\it z}\}$$

If $s \in \pm S$, since $(1, 1) \in \Sigma$, then $\Delta_s \subset \Sigma$. For (a, b) in such diagonal Δ_s ,

$$\operatorname{val}(a-b) = \operatorname{val}(s) = 0 \text{ or } s$$

In both cases $\operatorname{val}(a - b) \leq b$. If $h \in \pm H(S)$ and $(a, b) \in \Delta_h$, then $(a, b) \in \Sigma \Leftrightarrow \operatorname{val}(a - b) \leq b$

Thus

Proposition (B. - Fröberg)

Let $(a, b) \in \mathbb{N}^2$. Then

$$(a,b) \in \Sigma \Leftrightarrow \operatorname{val}(a-b) \leq b \Leftrightarrow a-b \in V_b$$

where $V_b = \{n \in \mathbb{N}; val(n) \leq b\}$

If $s \in S$, set $l(s) = \{n \in S; n \ge s\}$, which is an ideal of *S*. A numerical semigroup *S* is *Arf* if

l(s) - s

is a semigroup for each $s \in S$. An Arf numerical semigroup:

 $S = \langle 8, 12, 19, 22 \rangle$

Valentina Barucci On differential operators of numerical semigroup rings

If $s \in S$, set $I(s) = \{n \in S; n \ge s\}$, which is an ideal of *S*. A numerical semigroup *S* is *Arf* if

l(s) - s

is a semigroup for each $s \in S$. An Arf numerical semigroup:

Let S be a numerical semigroup with consecutive blowups

$$S=S_0\subseteq S_1\subseteq S_2\subseteq \dots$$

Lemma (B. - Fröberg)

If S is an Arf semigroup, then $S_i = V_i$, for each *i*, where $V_i = \{n \in \mathbb{N}; val(n) \le i\}$

Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example

 $\begin{array}{l} \mathsf{val}(2)=3, \text{ in fact } 2+0 \notin S, 2+4 \notin S \text{ and } 2+8 \notin S \text{ and } \\ 2 \in S_3 \setminus S_2 = \mathit{V}_3 \setminus \mathit{V}_2 \end{array}$

So, if *S* is an Arf numerical semigroup, we have an easy recipe to construct $A = \operatorname{gr}(D(\mathbb{C}[S]))$. We know in fact that (if $h \ge k$):

$$x^h y^k \in A \Longleftrightarrow h - k \in V_k \Longleftrightarrow h - k \in S_k$$

Picturing any monomial $x^h y^k$ with the point (h, k) in the plane, let's see what is $A = \text{gr}(D(\mathbb{C}[S]))$, taking the previous Arf semigroup $S = \langle 4, 11, 13, 14 \rangle$

▲聞 > ▲ 臣 > ▲ 臣 > ― 臣

Valentina Barucci On differential operators of numerical semigroup rings

▲日 → ▲圖 → ▲ 画 → ▲ 画 → □

■ _ _ のへ (や

Valentina Barucci On differential operators of numerical semigroup rings

・ロト・雪・・雪・・雪・・ 白・ の々ぐ

▲日 → ▲圖 → ▲ 画 → ▲ 画 → □

▲日 → ▲圖 → ▲ 画 → ▲ 画 → □

▲日 → ▲圖 → ▲ 画 → ▲ 画 → □

▲日 → ▲圖 → ▲ 画 → ▲ 画 → □

▲日 → ▲圖 → ▲ 画 → ▲ 画 → □

◆□ ▶ ◆圖 ▶ ◆ 国 ▶ ◆ 国 ▶ →

- an affine semigroup (i.e. a subsemigroup of Z^d, for some d)
- *pointed* or *positive* (i.e. the only $\sigma \in \Sigma$ such that $-\sigma \in \Sigma$ is (0,0))
- the quotient group of Σ , $gp(\Sigma)$ is \mathbb{Z}^2
- the normalization of Σ is

 $\overline{\Sigma} = \{x \in \operatorname{gp}(\Sigma); mx \in \Sigma, \text{ for some } m \in \mathbb{N}, m > 1\} = \mathbb{N}^2$

- the holes of Σ are a finite number, $H(\Sigma) = \overline{\Sigma} \setminus \Sigma$
- the pseudoFrobenius numbers can also be defined

 $T(\Sigma) = \{ au \in \operatorname{gp}(\Sigma); au \notin \Sigma, au + \Sigma_+ \subseteq \Sigma_+ \}$

where $\Sigma_+ = \Sigma \setminus (0,0)$ is the maximal ideal of Σ

• # • • • • • •

- an affine semigroup (i.e. a subsemigroup of Z^d, for some d)
- *pointed* or *positive* (i.e. the only $\sigma \in \Sigma$ such that $-\sigma \in \Sigma$ is (0,0))
- the quotient group of Σ , $gp(\Sigma)$ is \mathbb{Z}^2
- the normalization of Σ is

 $\overline{\Sigma} = \{x \in \operatorname{gp}(\Sigma); mx \in \Sigma, \text{ for some } m \in \mathbb{N}, m > 1\} = \mathbb{N}^2$

- the holes of Σ are a finite number, $H(\Sigma) = \overline{\Sigma} \setminus \Sigma$
- the pseudoFrobenius numbers can also be defined

 $T(\Sigma) = \{ au \in \operatorname{gp}(\Sigma); au \notin \Sigma, au + \Sigma_+ \subseteq \Sigma_+ \}$

where $\Sigma_+ = \Sigma \setminus (0,0)$ is the maximal ideal of Σ

▲ □ ▶ ▲ □ ▶ ▲

- an affine semigroup (i.e. a subsemigroup of Z^d, for some d)
- *pointed* or *positive* (i.e. the only $\sigma \in \Sigma$ such that $-\sigma \in \Sigma$ is (0,0))
- the quotient group of Σ , gp(Σ) is \mathbb{Z}^2
- the normalization of Σ is

 $\overline{\Sigma} = \{x \in \operatorname{gp}(\Sigma); mx \in \Sigma, \text{ for some } m \in \mathbb{N}, m > 1\} = \mathbb{N}^2$

- the holes of Σ are a finite number, $H(\Sigma) = \overline{\Sigma} \setminus \Sigma$
- the pseudoFrobenius numbers can also be defined

 $T(\Sigma) = \{ au \in \operatorname{gp}(\Sigma); au \notin \Sigma, au + \Sigma_+ \subseteq \Sigma_+ \}$

where $\Sigma_+ = \Sigma \setminus (0,0)$ is the maximal ideal of Σ

▲ □ ▶ ▲ □ ▶ ▲

- an affine semigroup (i.e. a subsemigroup of Z^d, for some d)
- pointed or positive (i.e. the only σ ∈ Σ such that −σ ∈ Σ is (0,0))
- the quotient group of Σ , $gp(\Sigma)$ is \mathbb{Z}^2
- the normalization of Σ is

 $\overline{\Sigma} = \{ x \in \operatorname{gp}(\Sigma); \ mx \in \Sigma, \text{ for some } m \in \mathbb{N}, m > 1 \} = \mathbb{N}^2$

- the holes of Σ are a finite number, $H(\Sigma) = \overline{\Sigma} \setminus \Sigma$
- the pseudoFrobenius numbers can also be defined

 $\mathcal{T}(\Sigma) = \{ au \in \operatorname{gp}(\Sigma); au \notin \Sigma, au + \Sigma_+ \subseteq \Sigma_+ \}$

where $\Sigma_+ = \Sigma \setminus (0,0)$ is the maximal ideal of Σ

< 回 > < 回 > < 回

- an affine semigroup (i.e. a subsemigroup of Z^d, for some d)
- pointed or positive (i.e. the only σ ∈ Σ such that −σ ∈ Σ is (0,0))
- the quotient group of Σ , $gp(\Sigma)$ is \mathbb{Z}^2
- the normalization of Σ is

 $\overline{\Sigma} = \{ x \in \operatorname{gp}(\Sigma); \ mx \in \Sigma, \text{ for some } m \in \mathbb{N}, m > 1 \} = \mathbb{N}^2$

the holes of Σ are a finite number, H(Σ) = Σ \ Σ
 the pseudoFrobenius numbers can also be defined

 $\mathcal{T}(\Sigma) = \{ au \in \operatorname{gp}(\Sigma); au
otin \Sigma, au + \Sigma_+ \subseteq \Sigma_+\}$

where $\Sigma_+ = \Sigma \setminus (0,0)$ is the maximal ideal of Σ

・ 同 ト ・ ヨ ト ・ ヨ

- an affine semigroup (i.e. a subsemigroup of Z^d, for some d)
- pointed or positive (i.e. the only σ ∈ Σ such that −σ ∈ Σ is (0,0))
- the quotient group of Σ , $gp(\Sigma)$ is \mathbb{Z}^2
- the normalization of Σ is

$$\overline{\Sigma} = \{ x \in \operatorname{gp}(\Sigma); \ mx \in \Sigma, \text{ for some } m \in \mathbb{N}, m > 1 \} = \mathbb{N}^2$$

• the holes of Σ are a finite number, $H(\Sigma) = \overline{\Sigma} \setminus \Sigma$

• the pseudoFrobenius numbers can also be defined

$\mathcal{T}(\Sigma) = \{ au \in \operatorname{gp}(\Sigma); au otin \Sigma, au + \Sigma_+ \subseteq \Sigma_+\}$

where $\Sigma_+ = \Sigma \setminus (0,0)$ is the maximal ideal of Σ

< 同 > < 回 > < 回 >

- an affine semigroup (i.e. a subsemigroup of Z^d, for some d)
- *pointed* or *positive* (i.e. the only $\sigma \in \Sigma$ such that $-\sigma \in \Sigma$ is (0,0))
- the quotient group of Σ , $gp(\Sigma)$ is \mathbb{Z}^2
- the normalization of Σ is

$$\overline{\Sigma} = \{ x \in \operatorname{gp}(\Sigma); \ mx \in \Sigma, \text{ for some } m \in \mathbb{N}, m > 1 \} = \mathbb{N}^2$$

- the holes of Σ are a finite number, $H(\Sigma) = \overline{\Sigma} \setminus \Sigma$
- the pseudoFrobenius numbers can also be defined

$$\mathcal{T}(\Sigma) = \{ \tau \in \operatorname{gp}(\Sigma); \tau \notin \Sigma, \tau + \Sigma_+ \subseteq \Sigma_+ \}$$

where $\Sigma_+ = \Sigma \setminus (0,0)$ is the maximal ideal of Σ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Thus $\mathbb{C}[\Sigma]$ is a two-dimensional Noetherian (non Cohen Macaulay) ring.

Proposition (E. Emtander)

For each affine semigroup Σ , $T(\Sigma)$, the set of pseudoFrobenius numbers, is finite.

Proof. Let $\sigma \in \Sigma \setminus \mathbf{0}$. The semigroup ideal generated by $\sigma + u$; $u \in T(\Sigma)$ is f. g.. If $u_1, u_2 \in T(\Sigma)$, $u_1 \neq u_2$, then $(\sigma + u_1)$ and $(\sigma + u_2)$ are both necessary to generate the ideal, because $(\sigma + u_1) - (\sigma + u_2) = u_1 - u_2 \notin \Sigma$. Thus $T(\Sigma)$ is finite.

If $\sigma \in \Sigma$, the Apery set of Σ with respect to σ is

$$\mathsf{Ap}_{\sigma}(\Sigma) = \{ \alpha \in \Sigma; \ \alpha - \sigma \notin \Sigma \} = \Sigma \setminus (\sigma + \Sigma)$$

ヘロト 人間 ト イヨト イヨト

-

Thus $\mathbb{C}[\Sigma]$ is a two-dimensional Noetherian (non Cohen Macaulay) ring.

Proposition (E. Emtander)

For each affine semigroup Σ , $T(\Sigma)$, the set of pseudoFrobenius numbers, is finite.

Proof. Let $\sigma \in \Sigma \setminus \mathbf{0}$. The semigroup ideal generated by $\sigma + u$; $u \in T(\Sigma)$ is f. g.. If $u_1, u_2 \in T(\Sigma)$, $u_1 \neq u_2$, then $(\sigma + u_1)$ and $(\sigma + u_2)$ are both necessary to generate the ideal, because $(\sigma + u_1) - (\sigma + u_2) = u_1 - u_2 \notin \Sigma$. Thus $T(\Sigma)$ is finite.

If $\sigma \in \Sigma$, the Apery set of Σ with respect to σ is

$$\mathsf{Ap}_{\sigma}(\Sigma) = \{ \alpha \in \Sigma; \ \alpha - \sigma \notin \Sigma \} = \Sigma \setminus (\sigma + \Sigma)$$

-

Thus $\mathbb{C}[\Sigma]$ is a two-dimensional Noetherian (non Cohen Macaulay) ring.

Proposition (E. Emtander)

For each affine semigroup Σ , $T(\Sigma)$, the set of pseudoFrobenius numbers, is finite.

Proof. Let $\sigma \in \Sigma \setminus \mathbf{0}$. The semigroup ideal generated by $\sigma + u$; $u \in T(\Sigma)$ is f. g.. If $u_1, u_2 \in T(\Sigma)$, $u_1 \neq u_2$, then $(\sigma + u_1)$ and $(\sigma + u_2)$ are both necessary to generate the ideal, because $(\sigma + u_1) - (\sigma + u_2) = u_1 - u_2 \notin \Sigma$. Thus $T(\Sigma)$ is finite.

If $\sigma \in \Sigma$, the Apery set of Σ with respect to σ is

$$\mathsf{Ap}_{\sigma}(\Sigma) = \{ \alpha \in \Sigma; \ \alpha - \sigma \notin \Sigma \} = \Sigma \setminus (\sigma + \Sigma)$$

3

Consider the partial order on Σ given by

$$\sigma_1 \preceq \sigma_2 \Leftrightarrow \sigma_1 + \sigma_3 = \sigma_2$$
, for some $\sigma_3 \in \Sigma$ (*)

Proposition (E. Emtander)

Let $\Sigma \subset \mathbb{Z}^d$ be a positive affine semigroup and let $0 \neq \sigma \in \Sigma$. Then the following are equivalent for $x \in \mathbb{Z}^d$: *i*) $x - \sigma \in T(\Sigma)$ *ii*) $x \in \max Ap_{\sigma}(\Sigma)$

Thus

$$|T(\Sigma)| = |\max \operatorname{Ap}_{\sigma}(\Sigma)| = 2|H(S)|$$

< □ > < 同 > < 回 > < 回 > < 回 >

Consider the partial order on Σ given by

$$\sigma_1 \preceq \sigma_2 \Leftrightarrow \sigma_1 + \sigma_3 = \sigma_2$$
, for some $\sigma_3 \in \Sigma$ (*)

Proposition (E. Emtander)

Let $\Sigma \subset \mathbb{Z}^d$ be a positive affine semigroup and let $0 \neq \sigma \in \Sigma$. Then the following are equivalent for $x \in \mathbb{Z}^d$: *i*) $x - \sigma \in T(\Sigma)$ *ii*) $x \in \max Ap_{\sigma}(\Sigma)$

Thus

$$|T(\Sigma)| = |\max Ap_{\sigma}(\Sigma)| = 2|H(S)|$$

・ 同 ト ・ ヨ ト ・ ヨ ト

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Has $|T(\Sigma)|$ a similar meaning in the ring $\mathbb{C}[\Sigma]$?

Let *I* be a proper ideal of Σ i.e. a proper subset *I* of Σ such that $I + \Sigma \subseteq I$. *I* is *irreducible* if it is not the intersection of two ideals which properly contain *I*. *I* is *completely irreducible* if it is not the intersection of any set of ideals which properly contain *I*.

For $x \in \Sigma$, set

$$B(x) = \{ \sigma \in \Sigma \mid \sigma \preceq x \}$$

< 同 > < 回 > < 回 >

Has $|T(\Sigma)|$ a similar meaning in the ring $\mathbb{C}[\Sigma]$?

Let *I* be a proper ideal of Σ i.e. a proper subset *I* of Σ such that $I + \Sigma \subseteq I$. *I* is *irreducible* if it is not the intersection of two ideals which properly contain *I*. *I* is *completely irreducible* if it is not the intersection of any set of ideals which properly contain *I*.

For $x \in \Sigma$, set

$$B(x) = \{ \sigma \in \Sigma \mid \sigma \preceq x \}$$

▲ 伺 ▶ ▲ 国 ▶ ▲ 国 ▶

Has $|T(\Sigma)|$ a similar meaning in the ring $\mathbb{C}[\Sigma]$?

Let *I* be a proper ideal of Σ i.e. a proper subset *I* of Σ such that $I + \Sigma \subseteq I$. *I* is *irreducible* if it is not the intersection of two ideals which properly contain *I*. *I* is *completely irreducible* if it is not the intersection of any set of ideals which properly contain *I*.

For $x \in \Sigma$, set

$B(\mathbf{x}) = \{ \sigma \in \Sigma \mid \sigma \preceq \mathbf{x} \}$

Has $|T(\Sigma)|$ a similar meaning in the ring $\mathbb{C}[\Sigma]$?

Let *I* be a proper ideal of Σ i.e. a proper subset *I* of Σ such that $I + \Sigma \subseteq I$. *I* is *irreducible* if it is not the intersection of two ideals which properly contain *I*. *I* is *completely irreducible* if it is not the intersection of any set of ideals which properly contain *I*.

For $x \in \Sigma$, set

$$\boldsymbol{B}(\boldsymbol{x}) = \{ \sigma \in \boldsymbol{\Sigma} \mid \sigma \preceq \boldsymbol{x} \}$$

< 同 > < 回 > < 回 >

Facts:

The irreducible ideals of Σ are of the following forms:

•
$$N_{(a,0)} := \Sigma \cap \{(x,y) \in \mathbb{N}^2; x \ge a\}$$

- $N_{(0,b)} := \Sigma \cap \{(x,y) \in \mathbb{N}^2; y \ge b\}$
- *I* = Σ \ *B*(*x*), for some *x* ∈ Σ, which is *completely irreducible* i.e. not the intersection of any set of ideals which properly contain *I*.

| 伊 ▶ ◀ 三 ▶ ◀
Proposition (B. - Fröberg)

Let I be an ideal of Σ generated by $(a_1, b_1), \dots, (a_h, b_h)$ and let $a = \min\{a_i\}, b = \min\{b_i\}$. Then

$$I = igcap_{x \in \max(\Sigma \setminus I)} (\Sigma \setminus B(x)) \cap N_{(a,0)} \cap N_{(0,b)}$$

is the unique irredundant decomposition of the ideal I as intersection of irreducible ideals.

If $I = \sigma + \Sigma$ is principal, then

$$\max(\Sigma \setminus I) = \max(\Sigma \setminus (\sigma + \Sigma)) = \max \operatorname{Ap}_{\sigma}(\Sigma)$$

So:

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Corollary (B. - Fröberg)

If $(0,0) \neq \sigma = (a,b) \in \Sigma$, then

$$\sigma + \Sigma = \bigcap_{x \in \max \operatorname{Ap}_{\sigma}(\Sigma)} (\Sigma \setminus B(x)) \cap N_{(a,0)} \cap N_{(0,b)}$$

is the unique irredundant decomposition of the principal ideal $\sigma + \Sigma$ as intersection of irreducible ideals.

Thus the number of irreducible components for a principal ideal is

$$|\max \operatorname{Ap}_{\sigma}(\Sigma)| + 2 = |T(\Sigma)| + 2 = 2|H(S)| + 2$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If a monomial ideal of $\mathbb{C}[\Sigma]$ is not the intersection of two strictly larger monomial ideals, then it is not the intersection of two strictly larger ideals, even if non monomial ideals are allowed. Thus

Corollary

Each principal monomial ideal of $\mathbb{C}[\Sigma]$ is an irredundant intersection of $|T(\Sigma)| + 2 = 2|H(S)| + 2$ irreducible ideals.

・ 同 ト ・ ヨ ト ・ ヨ ト

If a monomial ideal of $\mathbb{C}[\Sigma]$ is not the intersection of two strictly larger monomial ideals, then it is not the intersection of two strictly larger ideals, even if non monomial ideals are allowed. Thus

Corollary

Each principal monomial ideal of $\mathbb{C}[\Sigma]$ is an irredundant intersection of $|T(\Sigma)| + 2 = 2|H(S)| + 2$ irreducible ideals.

・ 同 ト ・ ヨ ト ・ ヨ ト