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Introduction.

The classical theory of Weierstrass points on projective
smooth curves and their associated Weierstrass semigroups is
closely related to algebraic-geometric (AG) codes.

Q closed point on X smooth projective curve
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JĴ

Weierstrass semigroup S ←→ Family of AG-codes {Ci}i∈N
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Feng-Rao function ν : S −→ N:
for i >> 0 it is a good bound for the minimum distance of Ci

Hence: new interest in studying Weierstrass semigroups.



1. Weierstrass semigroups and deformations.
Let k be an algebraically closed field, let X be a smooth
projective curve of genus g defined over k with function field
k(X). Let Q ∈ X be e closed point. For each n ∈ N:

L(nQ)={f ∈ k(X) \ 0 | div(f) + nQ ≥ 0} ∪ {0}
is a k vector space of finite dimension λ(nQ). By
Riemann-Roch the set

H(Q) = {n ∈ N+| λ((n− 1)Q) = λ(nQ)}
is a proper subset of {1, 2, . . . , 2g} of cardinality g. Its
complement

S(Q) := IN \H(Q)
is a numerical semigroup of genus g (=δ invariant). S(Q) is

the same for all but finitely many points Q (in characteristic 0
the generic semigroup is ordinary: S = {0, g, g + 1→} for
almost all points Q). The exceptions are respectively called

Weierstrass points and Weierstrass semigroups.
(Some authors call Weierstrass any semigroup S(Q), Q ∈ X)



It is known that there are non-Weierstrass semigroups.

Example Buchweitz (1980)
S =< 13, 14, 15, 16, 17, 18, 20, 22, 23 >, g = 16.

Further examples and results with necessary conditions by
Kim, Komeda, Torres and others.

Question How to recognize Weierstrass semigroups?

From now on we shall assume char k = 0.

One possible way is due to Pinkham (1974).

Theorem [Pinkham] Let S be a numerical semigroup, let
X = Spec(k[S]) be the associated monomial curve. Then:

S is Weierstrass ⇐⇒ X is smoothable.



This means that there exists a deformation π : Y −→ Σ of X

π−1(0) ' X ↪→ Yy yπ (flat)

{0} ↪→ Σ (base space)

with Σ integral scheme of finite type, such that π admits
non-singular fibers.

As a consequence of Pinkham’s theorem several semigroups
result to be Weierstrass. In particular:

(1) S minimally 3-generated [Shaps]

(2) with multiplicity ≤ 5 [ Maclachlan, Komeda]

(3) S with genus g ≤ 8, or g = 9 in particular cases [Komeda]

(4) Spec(k[S]) complete intersection. �



2. Deformations of monomial curves.

Notation S =< m0, . . . ,mn > numerical semigroup,

P = k [x0, . . . , xn], with weight(xj) = mj (0 ≤ j ≤ n);

k [S] = k [tm0 , tm1 , . . . , tmn ], X = Spec(k [S]).

k [S] = P/IX , IX = (f1, . . . , fp) (= I for short), fi
homogeneous binomial of degree di (1 ≤ i ≤ p).

For any deformation π : Y −→ Σ of X, denote by
IY = (F1, ..., Fp) the defining ideal of Y .

Theorem [Schlessinger - Pinkham - Whal]

Let X = Spec(k [S]), S numerical semigroup. Then X admits
a versal deformation π : Y −→ Σ. Further there exists a
k∗-action on Y extending the usual k∗-action on X. �



In case X = Spec(k [S]) a versal deformation (or simply any
deformation) can be obtained by an algorithm with a finite
number of steps, we shall outline.

- The first step is the construction of a first order infinitesimal
deformation of X i.e. with parameter space
Σ = Spec k[ε]/(ε2)

- the n-th step is the lifting of the established deformation
with parameter space Spec k[ε]/(εn) to a deformation on
Spec k[ε]/(εn+1).

- By the above theorem we know that the process ends.

Now we point out the main tools.



(2.1) The vector space T 1
X .

With the above setting, let

φ : HomOX
(Ω1

P/k ⊗OX ,OX) −→ HomOX
(I/I2, OX)

∂
∂xi

7→ g: g(f)=
“

∂f
∂xi

”
(mod I)

It is well-known that the non-trivial infinitesimal deformations
are in one-to-one correspondence with the OX- module

T 1(= T 1
X) = Cokernel(φ)

the correspondence is given by

F =

 f1 + εg1

. . .
fp + εgp

 ←→

 g : I/I2 −→ OX
fi 7→ gi(mod I)

(i = 1, . . . , p)

 .



(2.2) T 1
X for monomial curves.

We have:

(a) T 1 =
⊕

`∈Z T
1(`) is a Z-graded finite dimensional

k-vector space .

(b) g ∈ T 1(`) ⇐⇒ v(g(fi)) = deg(fi) + ` (i = 1, . . . , p),
where v : k(t) −→ Z is the usual valuation.

(c) Let ∆i := xi

(
∂
∂xi

)
; then

g ∈ T 1(`) =⇒


g = t`

∑n
i=1λi∆i, λi ∈ k,

g(fi) = 0 ∀ i such that di + ` /∈ S.

(2.3) Construction of a basis for T 1. We have pointed
out a method to find a basis for T 1 in the case of monomial
curves.



This can be done in an easy way starting from the Jacobian

matrix JX =

(
∂fi
∂xj

)
i=1,...,p
j=0,...,n

.

(a) The evaluation JX(1) of JX at the point Q(1, . . . , 1) ∈ X
is useful to calculate dimk T

1(`) for each ` ∈ Z ( Buchweitz,
Pinkham, Rim).

(b) If dimk T
1(`) > 0 an element t`(

∑n
1=1 λi∆i) ∈ T 1(`), can

be found by imposing the vector v = (λ1, . . . , λn) 6= 0 to be
orthogonal to every row of a suitable (n−1)× n submatrix
M` of JX(1) of rank (n−1) formed by columns C2, . . . , Cn+1

of JX(1) and by (n−1) independent rows. Hence can choose

v = exterior product of the rows of M`.

(c) When (f1, . . . , fp) have a syzygy matrix ρ0 with all the
entries of ρ0(Q) ∈ {−1, 0, 1}, this method gives a basis
{g1, . . . ,gh} of T 1 such that gj(fi)(Q) ∈ {−1, 0, 1} ∀i, j.



(2.4) Condition of flatness.

(Well-known) Given the diagram

π−1(0) ' X ↪→ Yy yπ (flat)

{0} ↪→ Σ (base space)

where IX = (f1, . . . , fp), IY = (F1, . . . , Fp) :

the map π is flat ⇐⇒ every relation
∑k

1 rifi = 0 can be

lifted to a relation
∑k

1 RiFi = 0,

( ri, fj ∈ k[x0, . . . , xk], Ri, Fj ∈ k[x0, . . . , xk]⊗OΣ,0).



(2.5) Algorithm (outline).

Step 1. Denote by f := (f1, . . . , fp)
T .

Given homogeneous elements g1, . . . , gh ∈
⊕

`<0 T
1(`),

(a basis of
⊕

`<0 T
1(`) to obtain a versal deformation) assign

a parameter Uj to each gj, with weight(Uj) = −deg(gj) and
consider

g := U1g1 + · · ·+ Uhgh, g1 := g(f) =
(
g(f1), . . . , g(fp)

)T
Let ρ0 be a (m× p) syzygy matrix for f: by construction

ρ0g1 ∈ ImX .
there exists a matrix ρ1 (m× p as ρ0) with entries
∈ k[U1, . . . , Uh, x0, . . . , xn]) such that

(ρ0 + ερ1)(f + εg1) ≡ 0 (mod ε2).



Therefore the components (F1, . . . , Fp) of F = f + εg1

generate the ideal IY1 of a first order infinitesimal deformation

π1 : Y1 −→ Σ1 ' Spec
(
k[U1, . . . , Uh]/(U1, . . . , Uh)

2
)
.

Step 2. By repeating the procedure on Spec k[ε]/(ε)3, we
find ρ2 (m× p) and g2 ( entries ∈ k[x0, . . . , xn, U1, . . . , Uh]),
such that

(ρ0 + ερ1 + ε2ρ2)(f + εg1 + ε2g2) ≡ 0 (mod ε3).

To solve this equation we must impose several conditions
a21, . . . , a2s on the variables U1, . . . , Uh.
But the above quoted Theorem assures that there exists a
solution: it allows to lift π1 to a deformation π2 : Y2 −→ Σ2

where

Σ2 ' Spec k[U1, . . . , Uh]/
(
(U1, . . . , Uh)

3 ∩ (a21, . . . , a2s)
)
.



We know the algorithm ends in a finite number, say N , of
steps. Hence

Step N. Get a deformation π : Y −→ Σ defined by

F = f + U1g1 + · · ·+ Uhgh + U2
1h11 + · · ·+ UN

h hN...N
.

Let Σ = Spec(A), substitute Ui with Uix
weight(Ui)
n+1 and let

R := A[x0, . . . , xn+1]/(F1, . . . , FP ).

The morphism π̃ : Proj(R) −→ Σ induced by π is proper,
flat, with fibers reduced projective curves. The generic fiber
has only one regular point Q∞(tm0 , . . . , tmn , 0) at infinity. If a
fiber C is smooth, then the semigroup associated to the pair(
C, Q∞

)
is Weierstrass is equal to S (Pinkham). �



(2.6) Example.
Let S =< 4, 9, 11 >, X = Spec (k[t4, t9, t11]).
We show how to construct a deformation of X. We have
IX = (f1, f2, f3), where deg(f1, f2, f3) = (20, 22, 27),

f1 = x5
0 − x1x2, f2 = x0x

2
1 − x2

2, f3 = −x3
1 + x4

0x2

JX(1) =

 5 −1 −1
1 2 −2
4 −3 1

, ρ0 =

(
−x2 x1 x0

x2
1 −x4

0 −x2

)
.

[resp. valuation of the jacobian matrix at Q(1, 1, 1) and syzygy
matrix]. Let ∆i := xi

∂
∂xi
, i = 0, 1, 2 (degree 0 derivations).

We have dimkT
1(OX) = 17 and T 1(OX) is OX-generated by g1 = t−18(∆1 −∆2) ∈ T 1(−18) v = (1,−1) ⊥ (−1,−1)

g2 = t−16(∆1 + ∆2) ∈ T 1(−16) v = (1, 1) ⊥ (2,−2)
g3 = t−11(∆1 + ∆2) ∈ T 1(−11)

g1(f) =

 0
x0

−x1

 , g2(f) =

x0

0
x2

 , g3(f) =

x1

0
x4

0





Step 1
Assign to each gi a parameter Ui and let g1 := g(f), where
g = U1g1 + U2g2 + U3g3, weight(U1, U2, U3) = (18, 16, 11) .
Get a first order infinitesimal deformation of X

π1 : Y1 −→ Σ = Spec k[ε, εU1, εU2, εU3]/(ε2)

with IY1 generated by the rows of F1 = f + εg1.
Further the matrix ρ0g results equal to −ρ1f with

ρ1 =

(
−U3 0 0
U1 −U2 U3

)
,

hence ρ0 + ερ1 is a syzygy matrix for F1.



Step 2. Now look for a lifting F2 defining a variety Y2 and a
matrix ρ2 such that

F2 = f + εg1 + ε2g2 and R2 = ρ0 + ερ1 + ε2ρ2

satisfy F2R2 = 0 (mod (ε3)), i.e., ρ0g2 + ρ1g1 + ρ2f ≡ 0.

Since ρ1g1 =

(
−x2 x1 x0

x2
1 −x4

0 −x2

) 0
−U2

3

−U2U3

 = −ρ0g2,

with g2 =

 0
U2

3

U2U3

, we can choose ρ2 = 0. Hence

π2 : Y2 −→ Spec
(
k[ε, εU1, εU2, εU3]/(ε3)

)
is flat.

Since ρ1g2 = 0, the algorithm ends at Step 2.



Substitute εUi with x
weight(Ui)
4 Ui for each i = 1, 2, 3 and let

Fi, (i = 1, 2, 3) be the weighted homogeneous rows of

F = f +

 x0x
16
4 U2 + x1x

11
4 U3

x0x
18
4 U1 + x22

4 U2
3

x1x
18
4 U1 + x2x

16
4 U2 + x4

0x
11
4 U3 + x27

4 U2U3

 .

With B = k[x0, . . . , x4, U1, U2, U3]/(F1, F2, F3) we get

π̃ : Proj(A) −→ Spec
(
k[U1, U2, U3]

)
whose fibres are weighted projective curves with one smooth
point Q∞(t4, t9, t11, 0) at infinity.

One can easily check that the generic fibre is non-singular. �



3. AS semigroups.
We apply the above tools to numerical semigroups S minimally
generated by an arithmetic sequence (AS semigroups):

S =< m0, ...,mn > with mi = m0 + id, d ≥ 1, i = 1, . . . , n.

Let a, b ∈ IN be such that
m0 = an+ b , with a ≥ 1, 1 ≤ b ≤ n

and let µ = a+ d.
The ideal I defining the curve X = Spec k[S] is generated by
the 2× 2 minors of the following two matrices:

A =

(
x0 x1 . . . xn−2 xn−1

x1 x2 . . . xn−1 xn

)
, A′ :=

(
xan x0 . . . xn−b
xµ0 xb . . . xn

)
A minimal set of generators for I is formed by the

(
n
2

)
maximal minors of the matrix A ( which define the affine cone
on the rational normal curve of Pn ) and the (n− b+ 1)
maximal minors M1,j of the matrix A′.



As regards the module T 1 = T 1(OX) we have:
Lemma

(1) If ` < −µm0, then T 1(`) = 0 except the case

` = −(µ+ 1)m0, when b = n.

(2) dimk T
1(−µm0) = 1.

Theorem
If b = 1 or b = n, then the semigroup is Weierstrass.

Proof (outline). If b = 1 the ideal I is determinantal generated
by the (2× 2) minors of A′. In this case one can deduce the
smoothability of the curve X by a result of M.Shaps on
determinantal ideals. Nevertheless by the above algorithm we
easily construct a deformation Y with smooth fibres using a
basis of T 1(−µm0). The ideal IY is again determinantal,
generated by the (2× 2) minors of the deformed matrix

A′def =

(
xan x0 . . . xn−1

xµ0 − Ux
µm0

n+1 x1 . . . xn

)
.



If b = n we proved the curve X is smoothable by constructing
a 1-parameter family of curves with smooth fibres

π : Y −→ Spec k[U ].
This deformation is related to g ∈ T 1(−(µ+ 1)m0): the
defining ideal of Y is

IY =
(
f1, . . . , f(n

2)
, xa+1

n − xµ+1
0 + U

)
( where f1, . . . , f(n

2)
are as above the maximal minors of

A =

(
x0 x1 . . . xn−2 xn−1

x1 x2 . . . xn−1 xn

)
, hence define the cone over

the rational normal curve C ⊆ Pn).



Corollary

Let S =< m0, . . . ,mn > be an AS-semigroup of embedding
dimension ≤ 5. Then S is Weierstrass. In fact:

(1) If n = 2, S is Weierstrass since every curve X ⊆ A3 is
smoothable.

(2) If n = 3, S is Weierstrass; in fact b ∈ {1, 2, 3} and the
remaining case b = 2 is known since X is Gorenstein of
codimension 3 (Buchsbaum-Eisenbud 1977).

(3) If n = 4, (X ⊆ A5) for the cases b ∈ {2, 3} we have
found suitable deformations with generic smooth fibre.

Conjecture

The result is true for any embedding dimension (work in
progress).



4. Order bound for AS-semigroups.

Let X be a projective smooth algebraic curve defined over a
field k, of genus g and let k(X) be its function field. Given a
k-rational Weierstrass point Q ∈ X, let S = S(Q) be the
corresponding Weierstrass semigroup: a family of codes can
be associated to (X,Q) as follows.
Let P1, ..., Pm be distinct k-rational points of X, Pj 6= Q for
each j: for each n ∈ IN, consider the finite dimensional
k-vector space

L(nQ)={f ∈ k(X) \ 0 | div(f) + nQ ≥ 0} ∪ {0}

and define

Φ : L(nQ) −→ km, Φ(f) = (f(P1), ..., f(Pm)).

Then (Im Φ)⊥ := Cn is the one-point AG code of order m
associated to Q and to the divisor P1 + ...+ Pm.



A good measure for the minimum distance d(Cn) of an AG
code Cn, is the Feng-Rao order bound, denoted dORD(Cn)
which depends only on the semigroup S: for sj ∈ S, let

ν(sj) := #{(sh, sk) ∈ S2 | sj = sh + sk}

the Feng-Rao order bound of the code Cn is defined as

dORD(Cn) := min{ν(sj) | j > n} ≤ d(Cn).

For S ordinary the sequence {ν(sj)}j∈N is non-decreasing and

dORD(i) = ν(si+1) for i ≥ 0.

In general there exists m∈ IN such that

ν(sm) > ν(sm+1) and ν(sm+k) ≤ ν(sm+k+1) ∀ k ≥ 1.

Then: dORD(Cn) = ν(sn+1) for each code Cn with n ≥ m.



We have calculated dORD(Cn) for AG-codes related to
AS-semigroups. Let:

c = min {r ∈ S | r + IN ⊆ S}, the conductor
δ = max{si ∈ S | si < c}, the dominant
g the genus.

Theorem

dORD(Ci) =


si + 2− 2g if sm ≤ si ≤ 2δ − 1
2(si + 1− δ − g) if 2δ ≤ si ≤ δ + c− 1
2c− 2g if δ + c ≤ si ≤ 2c− 2
2c− 2g + k if k > 0, si = 2c− 2 + k

where

sm =

[
2c− d− 2 if 2 ≤ d < m0 and b 6= 2
2c−m0 − 2 otherwise

�
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